北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2010, Vol. 33 ›› Issue (5): 141-144.doi: 10.13190/jbupt.201005.141.lirj

• 论文 • 上一篇    

PageRank模型在中文情感词极性判别中的应用

李荣军, 王小捷, 周延泉   

  1. 北京邮电大学 计算机学院,北京 100876
  • 出版日期:2010-08-28 发布日期:2010-08-28
  • 通讯作者: 李荣军 E-mail:lirongjun2002@bupt.edu.cn

Semantic Orientation Computing Using PageRank Model

 LI  Rong-Jun, WANG  Xiao-Cha, ZHOU  Yan-Quan   

  1. School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876,China
  • Online:2010-08-28 Published:2010-08-28

摘要:

针对倾向性分析任务重的基础性工作——情感词的极性判断工作,提供了一种基于PageTank模型的情感词极性判断方法.由待判别情感词和少量中子情感词构成图中的节点,利用知网(HowNet)语义资源计算词语间的语义想死度,进而得到图中节点间边的权重.通过PageRank模型的引入,综合利用有标种子情感词和无标待判别情感词实现对无标情感词的极性判别.与传统的基于HowNet的情感词判别方法相比,PageRank模型的引入使情感词判别的准确率平均提高10%左右,充分验证了所提方法的可行性.

关键词: 自然语言处理, 语义倾向分析, PageRank模型, 知网

Abstract:

For determining the polarity of sentiment words, an algorithm based on PageRank technology is proposed. A graph constructed whose nodes consist of unlabeled sentiment words and a few sentiment seeds, and the weights between each two nodes based on the semantic similarity of HowNet are also gained. With the PageRank technology on those seeds the polarity of the unlabeled sentiment words can be obtained. Compared with the methods based on HowNet to judging polarity of sentiment words, the proposed algorithm of combining PageRank technology shows its effectiveness by 10% increase of the precision.

Key words: natural language processing, semantic orientation, PageRank model, HowNet

中图分类号: